Rational points on hyperelliptic curves via the Chabauty-Kim method

Netan Dogra

joint work with Jennifer Balakrishnan, Steffen Müller and Alex Betts

September 8, 2017

Diophantine geometry of hyperelliptic curves

- $y^{2}=f(x)$ a hyperelliptic curve of genus g.
- How do we find the rational number solutions to this equation?
- Answer is hidden in the equation

$$
\phi^{*} \omega_{i}=\sum M_{i j} \omega_{j}+d f_{i}
$$

and the stable models at primes of bad reduction.

- Sometimes.

Chabauty-Coleman revisited

Fix p a prime of good reduction, and $b \in X(\mathbb{Q})$. Let J denote the Jacobian, and r the rank of J.

- Recall the idea of the Chabauty-Coleman method: we have g functions $\int_{b} \omega_{i}$. If the rank of J is less than g, then on rational points there is a nontrivial linear relation $\sum \lambda_{i} \int_{b} \omega_{i}=0$ between these functions.
- However the map

$$
\left(\int_{b} \omega_{0}, \ldots, \int_{b} \omega_{g-1}\right): X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}^{g}
$$

restricted to each residue disk, has Zariski dense image and is given by a power series. Hence $X(\mathbb{Q})$ is contained in the finite set $\left\{z \in X\left(\mathbb{Q}_{p}\right): \sum \lambda_{j} \int_{b}^{z} \omega_{i}=0\right\}$.

Quadratic Chabauty: The idea

What happens when the rank is equal to the genus?
Suppose we can find

- a function $F: X\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$
- An endomorphism $E \in \operatorname{End}\left(J\left(\mathbb{Q}_{p}\right), J\left(\mathbb{Q}_{p}\right)\right) \otimes \mathbb{Q}_{p}$.
- a vector $c \in J\left(\mathbb{Q}_{p}\right) \widehat{\otimes} \mathbb{Q}_{p}$,
- a bilinear map $B: J\left(\mathbb{Q}_{p}\right) \times J\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}$
- A finite set $\Omega \subset \mathbb{Q}_{p}$ such that
- For all $z \in X(\mathbb{Q}), F(z)-B(z-b, E(z-b)+c) \in \Omega$.
- For all $x \in X\left(\mathbb{F}_{p}\right),\left(\int_{b} \omega_{0}, \ldots, \int_{b} \omega_{g-1}, F\right)$, restricted to $] \times[$, has Zariski dense image and is given by power series.

Then $X(\mathbb{Q})$ is contained in the finite set $\{F(z)-B(z-b, E(z-b)+c) \in \Omega\} \subset X\left(\mathbb{Q}_{p}\right)$. Call (F, Ω) a quadratic Chabauty pair.

An example: Quadratic Chabauty for integral points on hyperelliptic curves

Theorem (Balakrishnan, Besser, Müller)

Let X be a hyperelliptic curve with a monic odd degree model, and define $Y=X-\infty$. Let Ω be the finite set

$$
\left\{\sum_{v \nmid p} h_{v}\left(P_{v}\right):\left(P_{v}\right) \in \prod_{v \nmid p} Y\left(\mathbb{Z}_{v}\right)\right\} .
$$

Then $\left(h_{p}, \Omega\right)$ is a quadratic Chabauty pair for $Y(\mathbb{Z})$.

This generalised previous work of Balakrishnan, Kedlaya and Kim on integral points on elliptic curves.

Generalisations

Goal of this talk: explain how to use quadratic Chabauty to find rational points on curves.
This is just the simplest nontrivial case of using Kim's nonabelian Chabauty method: the generalisation of $\int \omega_{i}, F$ is given by an analytic map $X\left(\mathbb{Q}_{p}\right) \rightarrow H_{f}^{1}\left(G_{p}, U_{n}\right)$, and the analogue of this map satisfying nontrivial polynomial relations on $X(\mathbb{Q})$ is the nondominance of the localisation map
 $\operatorname{Sel}\left(U_{n}\right) \rightarrow H_{f}^{1}\left(G_{p}, U_{n}\right)$.

By a theorem of Ellenberg and Hast, the Chabauty-Kim method explains finiteness of all hyperelliptic curves over \mathbb{Q}.

Example 1:J $\sim E_{1} \times E_{2}, r=g=2$

(joint with Balakrishnan, Müller)

$$
X=X_{0}(37) / \mathbb{Q}(i): y^{2}=x^{6}-9 x^{4}+11 x^{2}+37
$$

with maps f_{i} to E_{i} where

$$
\begin{array}{cc}
E_{1}: y^{2}=x^{3}-16 x+16 & E_{2}: y^{2}=x^{3}-x^{2}-373 x+2813 \\
f_{1}(x, y)=\left(x^{2}-3, y\right) & f_{2}(x, y)=\left(37 x^{-2}+4,37 x^{-3}\right)
\end{array}
$$

F can be taken to be

$$
\begin{gathered}
2 h_{E_{2}, \mathfrak{p}}\left(f_{2}(z)\right)-h_{E_{1}, \mathfrak{p}}\left(f_{1}(z)+(-3, \sqrt{37})\right)-h_{E_{1}, \mathfrak{p}}\left(f_{1}(z)+(-3,-\sqrt{37})\right) \\
\Omega=\left\{\frac{4}{3} \log _{p}(37)\right\} .
\end{gathered}
$$

We find $X(\mathbb{Q}(i))=\left\{(\pm 2: \pm 1),(\pm i, \pm 4), \infty^{ \pm}\right\}$.

Example 2: $\operatorname{End}^{0}(J) \simeq \mathbb{Q}(\sqrt{5}), r=g=2$

$$
x: y^{2}=x^{5}-x^{4}+x^{3}+x^{2}-2 x+1
$$

Then we may take
$F(z)=-4 x(z)-4+\sum_{0 \leq i, j \leq 3} Z_{i j} \int_{b}^{z} \omega_{i} \omega_{j}-\sum_{0 \leq i \leq 1,0 \leq j \leq 3} Z_{i j}\left(\int_{b}^{z} \omega_{i}\right)\left(\int_{w(b)}^{z} \omega_{j}\right)$
and $\Omega=\left\{0, \frac{4}{3} \log (2), \frac{8}{3} \log (2)\right\}$, where

$$
Z=\left(\begin{array}{cccc}
0 & -6 & 8 & -6 \\
6 & 0 & -6 & 12 \\
-8 & 6 & 0 & 0 \\
6 & -12 & 0 & 0
\end{array}\right)
$$

Then $X(\mathbb{Q})=\{(0, \pm 1),(1, \pm 1),(-1, \pm 1),(2, \pm 5),(4, \pm 29), \infty\}$.
In practice to compute this we worked with a different choice of F so that the associated bilinear form is K-linear.

(A nonhyperelliptic example) $\operatorname{End}^{0}(J)=\mathbb{Q}\left(\zeta_{7}\right)^{+}$,

 $r=g=3$(joint work with Balakrishnan, Müller, Jan Tuitman, Jan Vonk). $X=X_{s}^{+}(13)$: smooth plane quartic

$$
\begin{aligned}
& Y^{4}+5 X^{4}-6 X^{2} Y^{2}+6 X^{3} Z+26 X^{2} Y Z+10 X Y^{2} Z-10 Y^{3} Z-32 X^{2} Z^{2} \\
& -40 X Y Z^{2}+24 Y^{2} Z^{2}+32 X Z^{3}-16 Y Z^{3}=0
\end{aligned}
$$

- J has rank 3.
- Potential good reduction everywhere.
- There are two quadratic Chabauty pairs $\left(F_{1},\{0\}\right)$ and $\left(F_{2},\{0\}\right)$, which can be computed using Tuitman's algorithm.
We find $X_{s}^{+}(13)=\{(1: 1: 1),(1: 1: 2),(0: 0: 1),(-3: 3: 2),(1: 1:$ $0),(0: 2: 1),(-1: 1: 0)\}$.

What's going on?

Now suppose we have a hyperelliptic curve with an odd degree model. Suppose $\rho\left(J_{\mathbb{Q}}\right)=\rho\left(J_{\mathbb{Q}_{p}}\right)>1$. The function F is constructed by first finding an element $Z=\sum Z_{i j}\left[\omega_{i}\right] \otimes\left[\omega_{j}\right] \in H^{1}\left(X_{\mathbb{Q}_{p}}\right) \otimes H^{1}\left(X_{\mathbb{Q}_{p}}\right)$ be in the image of the cycle class map (we also need this Z to satisfy
$\sum Z_{i j}\left[\omega_{i}\right] \cup\left[\omega_{j}\right]=0$ and $\left.Z \neq Z^{t}\right)$.

- The p-adic Lefschetz $(1,1)$ theorem implies the image of the cycle class map is exactly equal to $\left(F^{1}\left(H^{1} \otimes H^{1}\right)\right) \cap\left(H^{1} \otimes H^{1}\right)^{\phi=p}$.
- Let \mathcal{A} denote the vector bundle \mathcal{O}_{Y}^{8}, with connection $d+\Lambda$, where

$$
\Lambda=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\omega & 0 & 0 \\
0 & \omega^{t} Z & 0
\end{array}\right)
$$

This connection carries a canonical F-structure (once you fix a basepoint), which can be computed using Kedlaya's algorithm.

From \mathcal{A} to F

By computing the F-structure (and a certain canonical filtration) on \mathcal{A}, we get away to associate to each $z \in X\left(\mathbb{Q}_{p}\right)$ a \mathbb{Q}_{p}-vector space equipped with a filtration and an automorphism (a filtered ϕ-module).
To get F, we apply Nekovar's p-adic height function on categories of Galois representations/filtered ϕ-modules:

$$
\begin{gathered}
J \rightsquigarrow \rho_{V} \\
D \in J(\mathbb{Q}) \rightsquigarrow\left(\begin{array}{cc}
1 & 0 \\
* & \rho_{V}
\end{array}\right) \quad \begin{array}{l}
\text { Kim's theory }+ \text { Nekovar's theory } \\
\text { implies that } F+\Omega \text { is bilinear, giving } \\
\text { the quadratic Chabauty pair. The set } \\
\Omega \text { is the image of } \prod_{v \neq p} X\left(\mathbb{Q}_{V}\right) \text { under }
\end{array} \\
D_{1}, D_{2} \in \operatorname{Div}^{0}(X) \rightsquigarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
* & \rho_{V} & 0 \\
* & * & \chi
\end{array}\right) \begin{array}{l}
\text { a sum of local height functions }
\end{array} \begin{array}{l}
\sum_{v}, \text { which are locally constant and } \\
\text { trivial at primes of good reduction. }
\end{array}
\end{gathered}
$$

A theorem

Theorem (Balakrishnan, D.)

Suppose $\mathrm{NS}\left(J_{\mathbb{Q}}\right)>1, r=g, p$ is a prime of good reduction, and the p-adic closure of $J(\mathbb{Q})$ in $J\left(\mathbb{Q}_{p}\right)$ is finite index. Define $F: z \mapsto h_{p}(A(z))$. Then there are locally constant functions $F_{v}: X\left(\mathbb{Q}_{v}\right) \rightarrow \mathbb{Q}_{p}$ which are identically zero for all prime of potential good reduction for X such that $\left(F,\left(\sum F_{v}\right) \prod_{v \neq p}\right) X\left(\mathbb{Q}_{v}\right)$ is a quadratic Chabauty pair.

Another characterisation is that $F_{v}(z)=h_{v}\left(z-b, C \cap\left(\Delta_{X}-X \times\{b\}-\{z\} \times X\right)\right)$, where C is a correspondence with cycle class Z.

Local computations at v prime to p.

(joint work with Alex Betts)

It remains to describe how to compute F_{v} in general. It turns out this can be reduced to computing a stable model!

Lemma (Betts, D.)

The local maps $F_{v}: X\left(\mathbb{Q}_{v}\right) \rightarrow \mathbb{Q}_{p}$ factor through the irreducible components of a regular semistable model.

Also get a recipe for computing the functions in terms of a graph of groups canonically associated the dual graph.

Thank you!

